
Evaluating corpus query systems on functionality and speed:
TIGERSearch and Emdros

Ulrik Petersen
Department of Communication, University of Aalborg

Kroghstræde 3
9220 Aalborg East, Denmark
ulrikp@hum.aau.dk

http://emdros.org/
Abstract

In this paper, we evaluate two corpus query systems
with respect to search functionality and query speed.
One corpus query system is TIGERSearch from IMS
Stuttgart and the other is our own Emdros corpus query
system. First, we show how the database model under-
lying TIGERSearch can be mapped into the database
model of Emdros. Second, the comparison is made
based on a set of standard linguistic queries culled
from the literature. We show that by mapping a
TIGERSearch corpus into the Emdros database model,
new query possibilities arise.

1 Introduction
The last decade has seen a growth in the number of avail-
able corpus query systems. Some query systems which
have seen their debut since the mid-1990ies include MATE
Q4M (Mengel 99), the Emu query language (Cassidy &
Bird 00), the Annotation Graph query language (Bird et al.
00), TGrep2 (Rohde 04), TIGERSearch (Lezius 02b), NXT
Search (Heid et al. 04), Emdros (Petersen 04), and LPath
(Bird et al. 05). In this paper, we have chosen to evalu-
ate and compare two of these, namely TIGERSearch and
Emdros.

TIGERSearch is a corpus query system made at the In-
stitut für Maschinelle Sprachverarbeitung at the University
of Stuttgart (Lezius 02a; Lezius 02b). It is a general cor-
pus query system over so-called syntax graphs (König &
Lezius 03), utilizing the TIGER-XML format for import
(Mengel & Lezius 00). Converters have been implemented
for the Penn Treebank, NeGRA, Susanne, and Christine
formats, among others. It is available free of charge for
research purposes.1

Emdros is also a general corpus query system, devel-
oped at the University of Aalborg, Denmark. It is appli-
cable to a wide variety of linguistic corpora supporting a
wide variety of linguistic theories, and is not limited to
treebanks. It implements the EMdF model and the MQL
query language described in (Petersen 04). Importers for
the TIGER-XML and other corpus formats have been im-
plemented, and more are under development. It is available
free of charge as Open Source software from the address
specified at the beginning of the paper.

The layout of the rest of the paper is as follows. First,
we briefly introduce the EMdF database model underly-
ing Emdros. Second, we introduce the database model un-
derlying TIGERSearch. Next, we show how to map the

1See http://www.tigersearch.de/

TIGERSearch database model into the EMdF model. The
next section explores how the TIGERCorpus (Brants &
Hansen 02), now in Emdros format, can be queried with
– in some instances – greater functionality and speed by
Emdros than by TIGERSearch. Finally, we conclude the
paper.

2 The EMdF model of Emdros
The EMdF text database model underlying Emdros is a de-
scendant of the MdF model described in (Doedens 94). At
the backbone of an EMdF database is a string of monads.
A monad is simply an integer. The sequence of the integers
dictates the logical reading sequence of the text. An ob-
ject is an arbitrary (possibly discontiguous) set of monads
which belongs to exactly one object type. An object type
(e.g., Word, Phrase, Clause, Sentence, Paragraph, Article,
Line, etc.) determines what features an object has. That is,
a set of attribute-value pairs are associated with each ob-
ject, and the attributes are determined by the object type
of the object. All attributes are strongly typed. Every ob-
ject has a database-widely unique ID called its id d, and
the feature self of an object denotes its id d. The notation
O.f is used to denote the value of feature f on an object O.
Thus, for example, O1.self denotes the id d of object O1.
An id d feature can have the value NIL, meaning it points
to no object. No object can have NIL as its id d.

The sample tree in Figure 1 shows a discontiguous el-
ement, and is adapted from (McCawley 82, p. 95). The
tree can be visualized as an EMdF database as in Figure 2.
This figure exemplifies a useful technique used for repre-
senting tree-structures in Emdros: Since, in a tree, a child
node always has at most one parent, we can represent the
tree by means of id d features pointing upwards from the
child to its parent. If a node has no parent (i.e., is a root
node), we can represent this with the value NIL. This tech-
nique will be used later when describing the mapping from
TIGERSearch to EMdF.

3 The TIGERSearch database model
The database model underlying TIGERSearch has been
formally described in (Lezius 02a) and (König & Lezius
03). The following description has been adapted from
the former, and is a slight reformalization of the database
model with respect to edge-labels.

Definition 1 A feature record F is a relation over FN×C

where FN is a set of feature-names and C is a set of

Figure 1: A tree with a discontiguous clause, adapted from
(McCawley 82, p. 95).

constants. The relation is defined such that for any
li = 〈fi, ci〉 and any lj = 〈fj , cj〉, li 6= lj ⇒ fi 6= fj .
That is, all fi within a feature-record are distinct. The
set of all feature-records over FN and C is denoted F .

Definition 2 The set of all node ids is called ID and the
relation ID ⊂ C holds.

Definition 3 A node is a two-tuple v ∈ ID × F . That is,
a node consists of a node id ν and a feature-record F .

Definition 4 A syntax graph G in the universe of graphs G
is a six-tuple G = (VNT , VT , LG, EG, OG, RG) with
the following properties:

1. VNT is the (possibly empty) set of non-terminals.
2. VT is the non-empty set of terminals.
3. LG is a set of edge labels where LG ⊂ C.2

4. EG is the set of labeled, directed edges of G. EG

is a set of two-tuples from VNT × (VNT ∪ VT).
If LG is non-empty, there exists an assignment
of edge-labels el which is a total function el :
EG → LG which need be neither surjective nor
injective.3

5. OG is a bijective function OG : VT →
{1, 2, . . . , |VT |} which orders the terminal
nodes. That the function is bijective guarantees
that all terminal nodes can be ordered totally by
OG.

6. RG ∈ VNT is the single root node of G, and has
no incoming edges.

G is a graph with the following characteristics:

G1: G is a DAG with exactly one root node RG.
G2: All nodes v ∈ ((VNT ∪ VT) \ RG) have exactly

one incoming edge in EG.
2The latter restriction is not mentioned by (Lezius 02a) di-

rectly on page 103 where this is defined, but is inferred from the
rest of the dissertation.

3This is where our reformulation differs in meaning from
(Lezius 02a). We think our formalization is slightly clearer than
Lezius’, but we may, of course, have misunderstood something.

1 2 3 4 5 6

Word

id_d: 1
surf.: John
pos: NProp
parent: 7

id_d: 2
surf.: talked
pos: V
parent: 10

id_d: 3
surf.: of
pos: P
parent: 9

id_d: 4
surf.: course
pos: N
parent: 9

id_d: 5
surf.: about
pos: P
parent: 8

id_d: 6
surf.: politics
pos: N
parent: 8

Phrase
id_d: 7
type: NP
parent: 11

id_d: 9
type: Unknown
parent: 12

id_d: 8
type: PP
parent: 10

Phrase
id_d: 10
type: V’
parent: 11

id_d: 10
type: V’
parent: 11

Clause
id_d: 11
type=S
parent: 12

id_d: 11
type=S
parent: 12

Clause id_d: 12
type=S

Figure 2: An EMdF representation of the tree in Figure 1.

G3: All nonterminals v ∈ VNT must have at least
one outgoing edge. That is, ∀v ∈ VNT∃v′ ∈
(VNT ∪ VT) : 〈v, v′〉 ∈ EG.4

Thus syntax graphs are not strict trees in the traditional
sense, since crossing edges are not prohibited. Neverthe-
less, syntax graphs are not arbitrary DAGs, since by G2,
every node has at most one parent, and in this respect they
do resemble trees.

This brief reformulation does not do justice to the full
description available in (Lezius 02a) and (König & Lezius
03). For more information on the syntax graph formalism,
see the cited publications.

4 Mapping syntax graphs to EMdF
TIGERSearch was developed specifically for use with the
TIGERCorpus (Brants & Hansen 02), though it is appli-
cable to other corpora as well (Lezius 02a, p. 136). In
order to compare TIGERSearch with Emdros, we had to
import a corpus available for TIGERSearch into Emdros.
The TIGERCorpus was chosen because it represents the
primary example of a TIGERSearch database, and because
it has a reasonably large size, furnishing a basis for speed-
comparisons.

We have developed an algorithm to transform any
database encoded in the syntax graph formalism into an
EMdF database. This section describes the algorithm.
First, we give some definitions, after which we show the
four algorithms involved.

Definition A1: For any syntax graph G, ObjG is the set of
EMdF objects which G gives rise to, and IDDG is the
set of id d’s of the objects in ObjG. Note, however,
that IDDG may be defined before ObjG, since there
is no causality in the direction from ObjG to IDDG;
in fact it is the other way around in the algorithms
below.

4Again, my reformulation differs slightly from Lezius’ formu-
lation, due to my reinterpretation of EG.

Definition A2: For any syntax graph G, NOBG is a bijec-
tive function from syntax graph nodes in G to ObjG.
That is, NOBG : (VNT ∪ VT) → ObjG.

Definition A3: For any syntax graph G and v ∈ (VNT ∪
VT), parent(v) is the parent node of v if v is not RG,
or ∅ if v is RG.

Definition A4: For any syntax graph G and its concomi-
tant ObjG, id dG is a bijective function id dG :
(VNT ∪VT) → IDDG with the definition id d(v) ::=
NOBG(v).self . Note, however, that this definition
only holds after the algorithms have all been applied;
in fact id dG is defined by construction rather than by
the given intensional, after-the-fact definition.

With this apparatus, we can define four algorithms which
use each other. Algorithm 0 merely creates an empty ob-
ject with a unique EMdF id d corresponding to each node
in a syntax graph G. Algorithm 1 adds monads to all ob-
jects corresponding to a nonterminal (i.e., all syntax-level
nodes). Algorithm 2 constructs a set of EMdF objects for a
given syntax graph G, and uses Algorithm 0 and 1. Algo-
rithm 3 constructs an EMdF database from a set G of syntax
graphs, and uses Algorithm 2

Algorithm 0: Purpose: Create empty objects in ObjG and
assign id ds to each object and to the id dG function
and IDDG.
Input: A syntax graph G and a starting id d d.
Output: A four-tuple consisting of the function id dG,
the set IDD G, the set ObjG, the set NOBG and an
ending id d de.

1. let id dG := ∅, and let ObjG := ∅

2. For all nodes v ∈ (VNT ∪VT) (the ordering does
not matter, so long as each node is treated only
once):
(a) let id dG(v) := d

(b) Create an EMdF object Od being an empty
set of monads and let Od.self := d

(c) let ObjG := ObjG ∪ {Od}
(d) let IDDG := IDDG ∪ {d}
(e) let NOBG := NOBG ∪ 〈v, Od〉
(f) let d := d + 1

3. Return 〈id dG, IDDG, ObjG, NOBG, d〉.

Algorithm 1: Purpose: To add monads to all objects cor-
responding to a non-terminal.
Input: A non-terminal p, the set IDDG, and the set
ObjG.
Output: Nothing, but ObjG is changed. (ObjG is call-
by-value here, so it is changed as a side-effect and not
returned.)

1. Let Ch := {c|parent(c) = p} (all immediate
children of p.

2. For all c ∈ Ch:
(a) If c ∈ VT : Let IDDG(parent(c)) :=

IDDG(parent(c)) ∪ IDDG(c) (Add termi-
nals’ monad-set to parent.)

(b) Else:
i. Call ourselves recursively with the param-

eters langlec, IDDG, ObjG〉.
ii. Let IDDG(parent(c)) :=

IDDG(parent(c)) ∪ IDDG(c) (Add c’s
monad-set to parent.)

Algorithm 2: Purpose: To construct a set of EMdF ob-
jects from a syntax graph G.
Input: A syntax graph G, a starting id d d, and a start-
ing monad m.
Output: A three-tuple consisting of a set of EMdF
objects ObjG, an incremented id d de and an ending
monad me.

1. Call Algorithm 0 on 〈G, d〉 to obtain
〈id dG, IDDG, ObjG, NOBG, de〉.

2. For all terminals t ∈ VT :
(a) let Ot := NOBG(t) ∪ {mt} where mt =

OG(t) +m− 1. (Remember that an object is
a set of monads, so we are adding a singleton
monad set here.)

(b) Let Ot.parent := id dG(parent(t)) if t is
not RG, and NIL if t is RG.

(c) Assign other features of Ot according to the
feature-record F in t = 〈ν, F 〉.5

(d) if LG is non-empty, let Ot.edge :=
el(〈parent(t), t〉)

3. Call Algorithm 1 with the parameters
〈RG, IDDG, ObjG〉. This assigns monad
sets to all objects.

4. For all v in VNT :
(a) Let Ov := ObjG(v).
(b) Let Ov.parent := id dG(parent(vv)) if v is

not RG, and NIL if v is RG.
(c) Assign other features of Ov according to the

feature-record F in v = 〈ν, F 〉.
(d) if LG is non-empty, let Ot.edge :=

el(〈parent(t), t〉)

5. Return 〈ObjG, d, mt〉 where mt ≡ OG(vt) +
m − 1 where vt is the rightmost terminal node,
i.e., ∃vt ∈ VT : ∀vj ∈ VT : vj 6= vt ⇒
OG(vt) > OG(vj)

Algorithm 3: Purpose: To construct a set of EMdF ob-
jects from a universe of syntax graphs G.
Input: A set of syntax graphs G, a starting id d d, and
a starting monad m.
Output: A two-tuple consisting of an incremented id d
de and an ending monad me.

5It is assumed, though the formalisation does not say so, that
the feature-records of all VT in all G ∈ G have the same “signa-
ture”, i.e., have the same set of feature-names that are assigned a
value in each F in each v ∈ VT . A similar assumption is made
for the signatures of all feature-records of all VNT . This is cer-
tainly the case with the TIGERCorpus. Therefore, the object type
Terminal is well-defined with respect to its features. Similarly
for the object type Nonterminal used below.

Q1. Find sentences that include the word ‘saw’.
Q2. Find sentences that do not include the word ‘saw’.
Q3. Find noun phrases whose rightmost child is a noun.
Q4. Find verb phrases that contain a verb immediately

followed by a noun phrase that is immediately
followed by a prepositional phrase.

Q5. Find the first common ancestor of sequences of a
noun phrase followed by a verb phrase.

Q6. Not relevant to TIGER Corpus.
Q7. Find a noun phrase dominated by a verb phrase.

Return the subtree dominated by that noun phrase.

Figure 3: The test queries from (Lai & Bird 04), Fig. 1.

Q1 #s:[cat="S"] & #l:[word="sehen"] & #s >* #l
Q2* #s:[cat="S"] & #l:[word="sehen"] & #s !>* #l
Q3 #n1:[cat="NP"] & #n2:[pos="NN"] & (#n1 >@r #n2)
Q4 #vp:[cat="VP"] & #v:[pos="VVFIN"] & #np:[cat="NP"]

& #pp:[cat="PP"]& #vp >* #v & #vp >* #np
& #vp >* #pp & #v >@r #vr & #np >@l #npl
& #vr .1 #npl & #np >@r #npr & #pp >@l #ppl
& #npr .1 #ppl

Q5* #vp:[cat="VP"] & #np:[cat="NP"] & (#np .* #vp)
& (#x >* #vp) & (#x >* #np)

Q7* #vp:[cat="VP"] & #np:[cat="NP"] & (#vp >* #np)

Figure 4: The test queries of Figure 3 attempted imple-
mented in TIGERSearch. Adapted from (Lai & Bird 04),
Fig. 4. The queries marked with a * may not produce the
correct results.

1. For all graphs G in G (if an ordering is intended,
i.e., this is not a quotation corpus, then that order
should be applied; otherwise, the order is unde-
fined):
(a) Let 〈ObjG, de, me〉 be the result of calling

Algorithm 2 on 〈G, d, m〉

(b) Add ObjG to the EMdF database.
(c) Let d := de and let m := me + 1

2. Return 〈d, m〉

5 Comparing TIGERSearch and Emdros
Using a variant of this algorithm, we have imported the
TIGERCorpus into Emdros. This gives us a common basis
for comparing TIGERSearch and Emdros.

The paper (Lai & Bird 04) sets out to specify some re-
quirements on corpus query systems for treebanks that the
authors perceive to be essential. Among other criteria, Lai
and Bird set up a set of standard queries which are repro-
duced in Figure 3.

Lai and Bird show how some of the queries can be
expressed in TIGERSearch, though they find that not all
queries can be expressed. I have attempted to reformu-
late Lai and Bird’s TIGERSearch queries in therms of the
TIGERCorpus (see Figure 4).

Query Q2 cannot be formulated correctly in
TIGERSearch. This is because what is being negated
is the existence of the word “sehen”, and in TIGERSearch,
all nodes are implicitly existentially quantified. Negated
existence would require a forall-quantification, as men-
tioned e.g. in (König & Lezius 03).

Query Q5 is probably not expressible in TIGERSearch,
and the given query fails to find the first common ancestor
only. The currect syntax graphs are returned, but with a

Q1 [Sentence [Word surface="sehen"]]
Q2 [Sentence NOTEXIST [Word surface="sehen"]]
Q3 [Phrase tag="NP" [Word last postag="NN"]]
Q4 [Phrase tag="VP"

[Word postag="VVFIN"]!
[Phrase tag="NP"]!
[Phrase tag="PP"]

]
Q5* [Phrase

[Phrase tag="NP"][Phrase tag="VP"]
]

Q7* [Phrase tag="VP" [Phrase tag="NP"]]

Figure 5: Emdros queries for Q1-Q7

Find all NPs which is a subject, inside of which there
is a relative clause whose parent is the NP. Inside
the relative clause, there must be a phrase p2, inside
of which there must be a word which is a cardinal. At
the end of the relative clause must be a finite verb
whose parent is the same as that of p2. No PP may
intervene between p2 and the verb.

[Phrase as p1 tag="NP" AND edge="SB"
[Phrase edge="RC" and parent=p1.self

[Phrase as p2 [Word postag="CARD"]]
..
NOTEXIST [Phrase tag="PP"]
..
[Word last postag="VVFIN"

AND parent=p2.parent]
]

]

Figure 6: Emdros query for Q8

number of subgraphs which are not rooted in the first com-
mon ancestor.

Query Q7 again finds the correct syntax graphs, but fails
to retrieve exactly the subtree dominated by the NP. In
TIGERSearch, what parts of a matched syntax-graph to re-
trieve is, in a sense, an irrelevant question, since the main
result is the syntax graph itself. Thus the assumption of
Lai and Bird that only parts of the matched tree is returned
does not hold for TIGERSearch.

Emdros fares slightly better as regards functionality, as
can be seen in Figure 5. Query Q2 is correctly expressed
in Emdros using the NOTEXIST operator at object-level,
which gives Emdros a slight edge over TIGERSearch in
this comparison. However, queries Q5 and Q7 fail to give
correct results on Emdros as they did on TIGERSearch.
Query Q5 fails because, while it returns the correct syn-
tax graphs, it fails to find only the first common ancestor.
This is the same situation as with TIGERSearch. As in
TIGERSearch, the requirement to find the “first common
ancestor” is difficult to express in Emdros. Query Q7 fails
because Emdros, like TIGERSearch, was not designed to
retrieve subgraphs as part of the query results – subgraphs
are to be retrieved later, e.g., for viewing purposes. Like
TIGERSearch, Emdros returns the correct syntax graphs,
and thus works as designed.

Query Q8 can be seen in Figure 6 along with the Em-
dros equivalent. It cannot be expressed in TIGERSearch
because of the negated existence-operator on the interven-
ing PP.

The queries were all timed, except for Q2 and Q6, which
were not expressible in either or both of the corpos query
systems. The hardware was an AMD Athlon 64 3200+ with

Query Emdros TIGERSearch
Q1 0.199; 0.202; 0.179 0.5; 0.3; 0.3
Q3 1.575; 1.584; 1.527 10.1; 9.9; 9.9
Q4 1.604; 1.585; 1.615 9.9; 9.9; 9.9
Q5 3.449; 3.319; 3.494 5.5; 6.6; 5.5
Q7 0.856; 0.932; 0.862 1.1; 1.1; 1.1
Q8 3.877; 3.934; 4.022 N/A

Table 1: Execution times in seconds

1GB of RAM and a 7200RPM harddrive running Linux
Fedora Core 4. Three measurements were taken for each
query. In the case of TIGERSearch, the timings reported
by the program’s status bar were used. For Emdros, the
standard Unix command time was used. The results can
be seen in Table 1.

As can be seen, Emdros is faster than TIGERSearch on
every query that they can both handle. (Lezius 02a) men-
tions that the complexity is exponential in the number of
query terms. It is very difficult to assess the complexity of
an Emdros query, since it depends on a handful of factors
such as the number of query items, the number of objects
that match each query item, and the number of possible
combinations of these.

Probably Emdros is faster in part because it takes a
different algorithmic approach to query resolution that
TIGERSearch: Instead of using proof-theory, it uses a
more linear approach of first retrieving all possible object-
”hits”, then iteratively walking the query, combining the
objects in monad-order as appropriate. Part of the speed
increase may stem from its being written in C++ rather
than Java, but for queries such as Q3 and Q4, the algorithm
rather than the language seems to be the decisive factor,
since such a large difference in execution time, relative to
the other increases, cannot be accounted for by language
differences alone.

6 Conclusion
In this paper, we have compared two corpus query systems,
namely TIGERSearch on the one hand and our own Em-
dros on the other. We have briefly introduced the EMdF
model underlying Emdros. The EMdF model is based on
the MdF model described in (Doedens 94). We have also
given a reformalization of the syntax graph formalism un-
derlying TIGERSearch, based on the presentation given in
(Lezius 02a). We have then presented an algorithm for con-
verting the syntax graph formalism into the EMdF model.

Having done this, we have compared the two corpus
query systems with respect to query functionality and
speed. The queries were mostly culled from the literature.
It was found that Emdros was able to handle all the test
queries that TIGERSearch was able to handle, in addition
to a few that TIGERSearch was not able to express. The lat-
ter involved the negation of the existence of an object; it is
a limitation in the current TIGERSearch that all objects are
implicitly existentially quantified, which means that negat-
ing the existence of an object is not possible. Negation at
the feature-level is, however, possible in both corpus query
systems. In both systems, the semantics of feature-level

negation is the same as the ¬ operator in First Order Logic.
Finally, the test queries which both systems were able to

handle were executed on the same machine over the same
corpus, namely the TIGERCorpus, and it was found that
Emdros was faster than TIGERSearch on every query, and
that the algorithm of Emdros seems to scale better than that
of TIGERSearch.

References
(Bird et al. 00) Steven Bird, Peter Buneman, and Tan Wang-Chiew. Towards a query

language for annotation graphs. In Proceedings of the Second International Con-
ference on Language Resources and Evaluation, pages 807–814. European Lan-
guage Resources Association, Paris, 2000. http://arxiv.org/abs/cs/0007023 Ac-
cess Online August 2004.

(Bird et al. 05) Steven Bird, Yi Chen, Susan Davidson, Haejoong Lee, and Yifeng
Zheng. Extending XPath to support linguistic queries. In Proceedings of Pro-
gramming Language Technologies for XML (PLANX) Long Beach, California.
January 2005., pages 35–46, 2005.

(Brants & Hansen 02) Sabine Brants and Silvia Hansen. Developments in
the TIGER annotation scheme and their realization in the corpus. In Pro-
ceedings of the Third International Conference on Language Resources and
Evaluation (LREC 2002), Las Palmas, Spain, May 2002, pages 1643–1649,
2002. http://www.ims.uni-stuttgart.de/projekte/TIGER/paper/lrec2002-brants-
hansen.pdf Access Online August 2004.

(Cassidy & Bird 00) Steve Cassidy and Steven Bird. Querying databases of an-
notated speech. In M.E. Orlowska, editor, Database Technologies: Proceed-
ings of the Eleventh Australasian Database Conference, volume 22 of Australian
Computer Science Communications, Canberra, Australia, pages 12–20. IEEE
Computer Society, 2000. http://arxiv.org/abs/cs/0204026, Access Online August
2004.

(Doedens 94) Christianus Franciscus Joannes Doedens. Text Databases: One
Database Model and Several Retrieval Languages. Number 14 in Language
and Computers. Editions Rodopi, Amsterdam and Atlanta, GA., 1994.

(Heid et al. 04) U. Heid, H. Voormann, J-T Milde, U. Gut, K. Erk, and S. Pado.
Querying both time-aligned and hierarchical corpora with NXT Search. In
Fourth Language Resources and Evaluation Conference, Lisbon, Portugal, May
2004, 2004.

(König & Lezius 03) Esther König and Wolfgang Lezius. The TIGER language. a
description language for syntax graphs. formal definition. Technical report, Insti-
tut für Maschinelle Sprachverarbeitung (IMS), University of Stuttgart, Germany,
April 22 2003.

(Lai & Bird 04) Catherine Lai and Steven Bird. Querying and updating treebanks:
A critical survey and requirements analysis. In Proceedings of the Australasian
Language Technology Workshop, December 2004, pages 139–146, 2004.

(Lezius 02a) Wolfgang Lezius. Ein Suchwerkzeug für syntaktisch annotierte
Textkorpora. Unpublished PhD thesis, Institut für Maschinelle Sprachver-
arbeitung, University of Stuttgart, December 2002. Arbeitspapiere des In-
stituts für Maschinelle Sprachverarbeitung (AIMS), volume 8, number 4.
http://www.ims.uni-stuttgart.de/projekte/corplex/paper/lezius/diss/, Access On-
line August 2004.

(Lezius 02b) Wolfgang. Lezius. TIGERSearch – ein Suchwerkzeug für Baum-
banken. In Stephan Busemann, editor, Proceedings der 6. Konferenz zur Ver-
arbeitung natürlicher Sprache (KONVENS 2002), Saarbrücken, pages 107–114,
2002.

(McCawley 82) James D. McCawley. Parentheticals and discontinuous constituent
structure. Linguistic Inquiry, 13(1):91–106, 1982.

(Mengel & Lezius 00) Andreas Mengel and Wolfgang Lezius. An XML-based en-
coding format for syntactically analyzed corpora. In Proceedings of the Second
International Conference on Language Resources and Evaluation (LREC 2000),
Athens, Greece, 31 May – 2 June 2000, pages 121–126, 2000.

(Mengel 99) Andreas Mengel. MATE deliverable D3.1 – specification of cod-
ing workbench: 3.8 improved query language (Q4M). Technical report,
Institut für Maschinelle Sprachverarbeitung, Stuttgart, 18. November, 1999.
http://www.ims.uni-stuttgart.de/projekte/mate/q4m/.

(Petersen 04) Ulrik Petersen. Emdros — a text database engine for an-
alyzed or annotated text. In Proceedings of COLING 2004, held Au-
gust 23-27 in Geneva. International Commitee on Computational Linguistics,
2004. http://www.hum.aau.dk/˜ulrikp/pdf/petersen-emdros-COLING-2004.pdf,
Access online August 2004.

(Rohde 04) Douglas L. T. Rohde. Tgrep2 user manual, version 1.12. Available
online http://tedlab.mit.edu/˜dr/Tgrep2/tgrep2.pdf. Access Online April 2005,
2004.

(Voormann & Lezius 02) Holger Voormann and Wolfgang Lezius. TIGERin -
Grafische Eingabe von Benutzeranfragen für ein Baumbank-Anfragewerkzeug.
In Stephan Busemann, editor, Proceedings der 6. Konferenz zur Verarbeitung
natürlicher Sprache (KONVENS 2002), pages 231–234, Saarbrücken, 2002.

