
Principles, Implementation Strategies,
and Evaluation of a Corpus Query System

Ulrik Petersen

University of Aalborg
Department of Communication and Psychology

Kroghstræde 3, DK — 9220 Aalborg East, Denmark
ulrikp@hum.aau.dk
http://emdros.org/

Abstract. The last decade has seen an increase in the number of avail-
able corpus query systems. These systems generally implement a query
language as well as a database model. We report on one such corpus
query system, and evaluate its query language against a range of queries
and criteria quoted from the literature. We show some important prin-
ciples of the design of the query language, and argue for the strategy of
separating what is retrieved by a linguistic query from the data retrieved
in order to display or otherwise process the results, stating the needs for
generality, simplicity, and modularity as reasons to prefer this strategy.

1 Introduction

The last decade has seen a growth in the number of available corpus query
systems. Newcomers since the mid-1990ies include MATE Q4M [1], the Emu
query language [2], the Annotation Graph query language [3], TIGERSearch [4],
NXT Search [5], TGrep2 [6], and LPath [7].

Our own corpus query system, Emdros [8, 9], has been in development since
1999. It is based on ideas from the PhD thesis by Crist-Jan Doedens [10]. It
implements a database model and a query language which are very general in
their applicability: Our system can be applied to almost any linguistic theory,
almost any linguistic domain (e.g., syntax, phonology, discourse) and almost any
method of linguistic tagging. Thus our system can be used as a basis for imple-
menting a variety of linguistic applications. We have implemented a number of
linguistic applications such as a generic query tool, a HAL1 space, and a number
of import tools for existing corpus formats. As the system is Open Source, others
are free to implement applications for their linguistic problem domains using our
system, just as we plan to continue to extend the range of available applications.

The rest of the paper is laid out as follows: First, we briefly describe the
EMdF database model underlying Emdros, and give an example of a database
expressed in EMdF. Second, we describe the MQL query language of Emdros
and its principles. Third, we argue for the strategy of separating the process of
1 HAL here stands for “Hyperspace Analogue to Language,” and is a statistical method

based on lexical co-occurrence invented by Dr. Curt Burgess and his colleagues [11].

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 215–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 U. Petersen

retrieving linguistic query results from the process of retrieving linguistic objects
based on such results for application-specific purposes. Fourth, we evaluate MQL
against a set of standard queries and criteria for corpus query languages culled
from the literature. Finally, we conclude the paper.

2 The EMdF Database Model

To illustrate how data can be stored in Emdros, consider Fig. 1. It shows an
example of a discontiguous clause, taken from [12, p. 95], represented both as a
tree and as a database expressed in the EMdF database model.

V/2

talked of course

Unknown/9

about politics

PP/8

S/12

John

S/11

NP/7 V’/10

1 2 3 4 5 6

Word

id: 1
surf.: John
pos: NProp
parent: 7

id: 2
surf.: talked
pos: V
parent: 10

id: 3
surf.: of
pos: P
parent: 9

id: 4
surf.: course
pos: N
parent: 9

id: 5
surf.: about
pos: P
parent: 8

id: 6
surf.: politics
pos: N
parent: 8

Phrase
id: 7
type: NP
parent: 11

id: 9
type: Unknown
parent: 12

id: 8
type: PP
parent: 10

Phrase
id: 10
type: V’
parent: 11

id: 10
type: V’
parent: 11

Clause
id: 11
type=S
parent: 12

id: 11
type=S
parent: 12

Clause
id: 12
type=S

a. A tree with a discontiguous b. A EMdF representation of the tree
clause, adapted from [12, p. 95]

Fig. 1. Two representation of a tree with a discontiguous clause

At the top of Fig. 1.b. are the monads. A monad is simply an integer, and
the sequence of the monads defines the logical reading order. An object is a
(possibly discontiguous) set of monads belonging to an object type (such as
“Word”, “Phrase”, “Clause”), and having a set of associated attribute-values.
The object type of an object determines what attributes it has. For example,
the “Word” object type in Fig. 1.b has attributes “id”, “surface”, “pos” (part of
speech), and “parent”. The id is a database-widely unique number that identifies
that object. In the above database, this has been used by the “parent” attribute
to point to the immediately dominating node in the tree.

In the EMdF database model, object attributes are strongly typed. The model
supports strings, integers, ids, and enumerations as types for attributes, as well
as lists of integers, ids, and enumeration labels. Enumerations are simply sets
of labels, and have been used for the Word.pos, Phrase.type, and Clause.type
attributes in the figure.2 Real-number values are under implementation, and will
be useful for, e.g., acoustic-signal timelines.
2 The “dot-notation” used here is well known to programmers, and is basically a

possessive: “Word.pos” means “the pos attribute of the Word object-type”.

Principles, Implementation Strategies, and Evaluation of a CQS 217

3 The MQL Query Language

The MQL query language of Emdros is a descendant of the QL query language
described in [10]. Like QL, it is centered around the concept of “blocks”, of which
there are three kinds: “Object blocks”, “gap blocks”, and “power blocks”.

An “Object block” finds objects in the database (such as phonemes, words,
phrases, clauses, paragraphs, etc.) and is enclosed in [square brackets]. For ex-
ample, the query [Word surface="saw"] will find Word objects whose surface
attribute is “saw”, whereas the query [Phrase type = NP and function =
Subj] will find phrases whose phrase type is NP and whose function is Subject.
Of course, this presupposes an appropriately tagged database. The attribute-
restrictions on the object are arbitrary boolean expressions providing the
primitives “AND”, “OR”, “NOT”, and “grouping (parentheses)”. A range of
comparison-operators are also provided, including equality, inequality, greater-
than (or equal to), less than (or equal to), regular expressions (optionally
negated), and IN a disjoined list of values. For lists, the HAS operator looks
for a specific value in the list.

A “gap block” finds “gaps” in a certain context, and can be used to look
for (or ignore) things like embedded relative clauses, postpositive conjunctions,
and other material which is not part of the surrounding element. A gap block is
specified as [gap ...] when obligatory, and as [gap? ...] when optional.

A “power block” is denoted by two dots (“..”), and signifies that there can
be arbitrary space between the two surrounding blocks. However, this is always
confined to be within the limits of any context block.

The power block can optionally have a restriction such as “.. <= 5” or “..
BETWEEN 3 AND 6” meaning respectively that the “space” can be between zero
and five “least units” long, or that it must be between 3 and 6 “least units” long.
Precisely what the “least unit” is, is database-dependent, but is usually “Word”
or “Phoneme”.3

The MQL query language implements the important principle of topographic-
ity described in [10], meaning that there is an isomorphism between the structure
of the query and the structure of the objects found. The principle of topographic-
ity works with respect to two important textual principles, namely embedding
and sequence.

As an example of topographicity with respect to embedding, consider the
query Q1 in Fig. 3 on page 221. This query finds sentences within which there is
at least one word whose surface is “saw”. The “[Word surface="saw"]” object
block is embedded in the “[Sentence ...]” object block. Because of the prin-
ciple of topographicity, any Word objects found must also be embedded in the
Sentence objects found.

Similarly, in Query Q5 in Fig. 3, the two inner [Syntax level=Phrase ...]
object blocks find Syntax objects that immediately follow each other in sequen-
tial order, because the object blocks are adjacent. “Being adjacent” here means

3 This is an example of the generality of the EMdF database model, in that it supports
many different linguistic paradigms and methods of analysis.

218 U. Petersen

“not being separated by other blocks” (including a power block). There is a
caveat, however. The default behavior is to treat objects in the database as “be-
ing adjacent” even if they are separated by a gap in the surrounding context.
For examle, in Query Q5, if the surrounding Sentence object has a gap between
the NP and the VP4, then that query will find such a sentence due to the default
behavior. If this is not the desired behavior (i.e., gaps are not allowed), one can
put the “!” (bang) operator in between the object blocks, as in Query Q4 in
Fig. 3. This will require the objects found by the object blocks surrounding the
bang to be strictly sequential.

An object block can be given the restriction that it must be first, last, or
first and last in its surrounding context. An example using the last keyword
can be seen in Query Q3 in Fig. 3.

The object retrieved by an object block can be given a name with the AS
keyword. Subsequent object blocks can then refer back to the named object. An
example can be seen in Query Q5 in Fig. 3, where the dominating Syntax object
is named AS S1. The dominated phrase-level Syntax object blocks then refer
back to the dominating object by means of the “possessive dot notation” men-
tioned previously. Obviously, this facility can be used to specify both agreement,
(immediate) dominance, and other inter-object relationships.

The NOTEXIST operator operates on an object block to specify that it must
not exist in a given context. An example can be seen in Query Q2 in Fig. 3,
where the existence of a word with the surface “saw” is negated. That is, the
query finds sentences in which the word “saw” does not occur.

Notice that this is different from finding sentences with words whose surface
is not “saw”, as the query [Sentence [Word surface<>"saw"]] would find.
Relating this to First Order Logic, the NOTEXIST operator is a negated exis-
tential quantifier ¬∃ at object level, whereas the <> operator is a negated equality
operator �= at object attribute level. If the NOTEXIST operator is applied to an
object block, the object block must be the only block in its context.

The Kleene Star operator also operates on an object block, and has the usual
meaning of repeating the object block zero or more times, always restricted to
being within the boundaries of any surrounding context block. For example, the
query

[Sentence
[Word pos=preposition]
[Word pos IN (article,noun,adjective,conjunction)]*

]

would find the words of many prepositional phrases, and could be used in a
stage of initial syntactic markup of a corpus. The Kleene Star also supports
restricting the number of repetitions with an arbitrary set of integers. For ex-
ample: [Phrase]*{0,1} means that the Phrase object may be repeated 0 or 1

4 As argued by [12], the sentence “John, of course, talked about politics” is an example
of an element with a gap, since “of course” is not part of the surrounding clause.

Principles, Implementation Strategies, and Evaluation of a CQS 219

times;5 [Clause]*{2-4} means that the Clause object may be repeated 2, 3, or
4 times; and any set of integers can be used, even discontiguous ones, such as
[Phrase]*{0-3,7-9,20-}. The notation “20-” signifies “from 20 to infinity”.

An OR operator operating on strings of blocks is available. It means that one
or both strings may occur in a given context. An example is given in Query Q7
in Fig. 3.

MQL has some shortcomings, some of which will be detailed later. Here we
will just mention four shortcomings which we are working to fix, but which time
has not allowed us to fix yet. We have worked out an operational semantics for
the following four constructs: AND between strings of blocks (meaning that both
strings must occur, and that they must overlap);6 Grouping of strings of blocks;
and general Kleene Star on strings of blocks (the current Kleene Star is only
applicable to one object block). A fourth operator can easily be derived from
the existing OR construct on strings of blocks, namely permutations of objects.

4 Retrieval of Results

When querying linguistic data, there are often three distinct kinds of results
involved:

1. The “meat”, or the particular linguistic construction of interest.
2. The context, which is not exactly what the user is interested in, but helps

delimit, restrict, or facilitate the search in some way. For example, the user
may be interested in subject inversion or agentless passives, but both require
the context of a sentence. Similarly, the user may be interested in objects
expressed by relative pronouns combined with a repeated pronoun in the
next clause, which might require the presence of intervening, specified, but
otherwise non-interesting material such as a complementizer.7 In both cases,
the user is interested in a specific construction, but a certain context (either
surrounding or intervening) needs to be present. The context is thus neces-
sary for the query to return the desired results, but is otherwise not a part
of the desired results.

3. The postprocessing results which are necessary for purposes which are
outside the scope of the search.

To illustrate, consider the query Q2 in Fig. 3. For display purposes, what
should be retrieved for this query? The answer depends, among other things,
on the linguistic domain under consideration (syntax, phonology, etc.), the lin-
guistic categories stored in the database, the purposes for which the display is
made, and the sophistication of the user. For the domain of syntax, trees might

5 Notice that this supports optionality in the language; that the phrase object appears
0 or 1 times is equivalent to saying that it is optional.

6 This is precisely what is needed for querying overlapping structures such as those
found in speech data with more than one speaker, where the speaker turns overlap.

7 E.g., “He gave me a ring, which, I really don’t like that it is emerald.”

220 U. Petersen

be appropriate, which would require retrieval of all nodes dominated by the sen-
tence. For the domain of phonology, intonational phrases, tones, pauses, etc. as
well as the phonemes dominated by the sentence would probably have to be
retrieved. As to purpose, if the user only needed a concordance, then only the
words dominated by the sentence need be retrieved, whereas for purposes requir-
ing a full-fledged tree, more elements would have to be retrieved. The level of
sophistication of the user also has a role to play, since an untrained user might
balk at trees, whereas keywords in context may be more understandable.

Similarly, for statistical purposes, it is often important to retrieve frequency
counts over the entire corpus to compare against the current result set. These
frequency counts have nothing to do with the answer to the original query, but
instead are only needed after the results have been retrieved. They are, in a
very real sense, outside the scope of the query itself: The user is looking for a
particular linguistic construction, and the corpus query system should find those
constructions. That the post-query purpose of running the query is statistical
calculations is outside the scope of the query, and is very application-specific.

Thus what is asked for in a linguistic query is often very different from what
needs to be retrieved eventually, given differences in linguistic domain, categories
in the database, purpose of display, and sophistication of the user. Therefore, in
our view, it is advantageous to split the two operations into separate query lan-
guage constructs. The subset of the query language supporting linguistic query-
ing would thus be concerned with returning results based on what is asked for in a
linguistic query, whereas other subsets of the query language would be concerned
with retrieving objects based on those results for display- or other purposes.

This separation, because it is general, supports a multiplicity of linguistic ap-
plications, since the concern of linguistic querying (which is common to all lin-
guistic query applications) is separated from the concern of querying for display-,
statistical, or other purposes (which are specific to a given application). More-
over, it shifts the burden of what to retrieve based on a given query (other
than what is being asked for) off the user’s mind, and onto the application, thus
making the query language simpler both for the user and for the corpus query
system implementor. Finally, this strategy lends itself well to modularization
of the query language. That modularization is good, even necessary for correct
software implementation has long been a credo of software engineering.8

5 Evaluation

Lai and Bird [13] formulate some requirements for query languages for treebanks.
They do so on the backdrop of a survey of a number of query languages, including
TGrep2, TIGERSearch, the Emu query language, CorpusSearch, NXT Search,
and LPath. Lai and Bird set up a number of test queries (see Fig. 2) which are
then expressed (or attempted expressed) in each of the surveyed query languages.

8 Emdros adheres to this modular principle of separation of concerns between corpus
query system and a particular linguistic application on top of it.

Principles, Implementation Strategies, and Evaluation of a CQS 221

Q1. Find sentences that include the word ‘saw’.
Q2. Find sentences that do not include the word ‘saw’.
Q3. Find noun phrases whose rightmost child is a noun.
Q4. Find verb phrases that contain a verb immediately followed by a noun phrase that

is immediately followed by a prepositional phrase.
Q5. Find the first common ancestor of sequences of a noun phrase followed by a verb

phrase.
Q6. Find a noun phrase which dominates a word dark that is dominated by an inter-

mediate phrase that bears an L-tone.
Q7. Find a noun phrase dominated by a verb phrase. Return the subtree dominated

by that noun phrase.

Fig. 2. The test queries from [13], Fig. 1

Q1. [Sentence
[Word surface="saw"]

]
Q2. [Sentence

NOTEXIST [Word
surface="saw"]

]
Q3. [Phrase type=NP

[Word last pos=noun]
]

Q4. [Phrase type=VP
[Word pos=verb]!
[Phrase type=NP]!
[Phrase type=PP]

]

Q5.? [Syntax AS S1
[Syntax level=Phrase AND type=NP

AND parent=S1.id]
[Syntax level=Phrase AND type=VP

AND parent=S1.id]
]

Q6.? [Intermediate tone="L-"
[Phrase type=NP

[Word surface="dark"]
]

]
Q7. [Phrase type=VP

[Phrase type=NP AS np1
[Phrase parents HAS np1.id

[Word]
] OR
[Word parent=np1.id]

]
]

Fig. 3. MQL queries for Q1-Q7

For all query languages surveyed, it is the case that at least one query cannot
be correctly expressed.

The queries are attempted expressed in MQL as in Fig. 3. Query Q1 is trivial,
and performs as expected. Query Q2 has already been explained above, and
deserves no further comment. The constraint of query Q3 that the noun must be
the rightmost child is elegantly expressed by the “last” operator on the noun.

In query Q4, the verb, the NP, and the PP are not separated by power blocks
(“..”) and so must immediately follow each other. As mentioned above, gaps
are ignored unless the “bang” operator (“!”) is applied in between the object
blocks. Since the query specification explicitly mentions “immediately followed
by”, we have chosen to insert this operator. Of course, if the default behavior is
desired, the bang operator can simply be left out.

222 U. Petersen

Query Q5 fails to yield the correct results in some cases because it presup-
poses that the “first common ancestor” is the immediate parent, which it need
not be. Had the “parent=S1.id” terms been left out of the conjunctions, the
query would have found all ancestors, not just the immediate ancestor. It is a
shortcoming of the current MQL that it is not easy to express other relationships
than “general ancestry” and “immediate ancestry”.

Query Q5 also presupposes a different database structure than the other
queries: In the database behind Q5, all syntax-level objects have been lumped
together into one “Syntax” type. This “Syntax” type has a “level” attribute
specifying the linguistic level at which the element occurs (Phrase, Clause, etc.),
as well as other attributes.

This reorganization of the database is necessary for Q5 because it does not
specify what level the dominating node should be at (Phrase, Clause, or Sen-
tence). It is a limitation in Emdros that it can only handle one, explicit type for
each object block.

For some lingusitic databases, query Q6 would fail to retrieve all possible
instances because it assumes that the NP is wholly contained in the Intermediate
Phrase. But as [14, p. 176] reports, this is not always true.9

Query Q7 not only needs to specify context, but also to retrieve the subtree,
presumably for display- or other purposes, since it is not part of what is be-
ing asked for (i.e., the “meat”). As mentioned in Sect. 4, Emdros adheres to a
different philosophy of implementation. While it is possible in MQL to retrieve
exactly whatever the user wants, the algorithm for doing so would in most cases
be split between retrieving linguistic results and using other parts of the query
language for retrieving objects for display-purposes.

The Q7 query nevertheless fulfills its purpose by retrieving all phrases domi-
nated by the NP together with the words they contain, OR all words immediately
dominated by the NP. Thus, Emdros is able to fulfill the purpose of the query
even though Emdros was not designed for such use.

Lai and Bird go on from their survey to listing a number of requirements on
linguistic query languages. The first requirement listed is “accurate specification
of the query tree”. Lai and Bird give eight subtree-matching queries, all of which
can be expressed in MQL (see Fig. 4). Query number 5 would require the em-
ployment of the technique used for query Q5 in Fig. 3 of using a single object
type for all syntax objects, using an attribute for the syntactic level, then leaving
out the level from the query.

Another requirement specified by Lai and Bird is that of reverse navigation,
i.e., the need to specify context in any direction. MQL handles this gracefully,
in our opinion, by the principle of topographicity with respect to embedding
and sequence. Using this principle, any context can be specified in both vertical
directions, as well as along the horizontal axis.

9 The example given there is an intermediate phrase boundary between adjectives and
nouns in Japanese — presumably the adjective and the noun belong in the same NP,
yet the intermediate phrase-boundary occurs in the middle of the NP.

Principles, Implementation Strategies, and Evaluation of a CQS 223

1. Immediate dominance: A dominates B, A may
dominate other nodes.

[A AS a1 [B parent=A1.id]]

2. Positional constraint: A dominates B, and B is the
first (last) child of A.

[A [B first]] or:
[A [B last]]

3. Positional constraint with respect to a label: A
dominates B, and B is the last B child of A.

[A [B last]]

4. Multiple Dominance: A dominates both B and C,
but the order of B and C is unspecified.

[A [B]..[C] OR [C]..[B]]

5. Sibling precedence: A dominates both B and C, B
precedes C; A dominates both B and C, B immedi-
ately precedes C, and C is unspecified.

precedes: [A [B]..[C]]
immediately precedes:
[A [B][C]] or [A [B]![C]].

6. Complete description: A dominates B and C, in
that order, and nothing else.

[A as a1
[B first parent=a1.id]!
[B last parent=a1.id]

]

7. Multiple copies: A dominates B and B, and the
two Bs are different instances.

[A [B]..[B]]

8. Negation: A does not dominate node with label B. [A NOTEXIST [B]]

Fig. 4. Subtree queries in the MQL query language, after Lai and Bird’s Fig. 9

Lai and Bird then mention non-tree navigation as a requirement. They give
the example of an NP being specified either as “[NP Adj Adj N]” or as “[NP
Adj [NP Adj N]]”, the latter with a Chomsky-adjoined NP inside the larger NP.
MQL handles querying both structures with ease, as seen in Fig. 5. Note that the
query in Fig. 5.a. would also find the tree in Fig. 5.b. Thus non-tree navigation
is well supported.

Furthermore, Lai and Bird mention specification of precedence and immedi-
ate precedence as a requirement. MQL handles both with ease because of the
principle of topographicity of sequence. General precedence is signified by the
power block (“..”), whereas immediate precedence is signified by the absence
of the power block, optionally with the bang operator (“!”).

Lai and Bird then discuss closures of various kinds. MQL is closed both under
dominance (by means of topographicity of embedding) and under precedence

Adj

NP

Adj N

[Phrase type=NP
[Word first

pos=adjective]
[Word pos=adjective]
[Word last pos=noun]

]

a. Flat structure

Adj

Adj

NP

NP

N

[Phrase type=NP
[Word first pos=adjective]
[Phrase last type=NP
[Word first pos=adjective]
[Word last pos=noun]

]
]

b. Chomsky-adjoined structure

Fig. 5. Queries on NP structure

224 U. Petersen

and sibling precedence (by means of topographicity of sequence, as well as the
power block and the AS keyword, which separately or in combination can be used
to specify closures under both relationships). MQL is also closed under atomic
queries involving one object (by means of the Kleene Star).10

Lai and Bird discuss the need for querying above sentence-level. Since the
EMdF database model is abstract and general, the option exists of using ordered
forests as mentioned by Lai and Bird. The MQL query language was designed
to complement the EMdF model in its generality, and thus querying over or-
dered forests is well supported using the principle of topographicity of sequence
combined with the AS construct. Thus the MQL language is not restricted to
querying sentence-trees alone, but supports querying above sentence-level.

Another requirement mentioned by Lai and Bird is that of integration of
several types of lingusitic data, in particular using intersecting hierarchies and
lookup of data from other sources. The EMdF model supports intersecting hi-
erarchies well. MQL, however, because of the principle of topographicity of em-
bedding and the lack of an AND construct between strings of blocks, does not
currently support querying of intersecting hierarchies very well, as illustrated by
the failure of Query Q6 in Fig. 3 to be correct. Thus Emdros currently falls short
on this account, though an AND construct is planned.

There is also currently a lack of support for querying data from other sources.
However, this can be implemented by the application using Emdros, provided
the data from other sources can be known before query-time and can thus be
written into the query. This would, of course, presuppose that the application
does some kind of rewriting of the query made by the user.

The final requirement mentioned by [13] is the need to query non-tree struc-
ture. For example, the TIGER Corpus [15] includes secondary, crossing edges,
and the Penn Treebank includes edges for WH-movement and topicalization
[16]. MQL handles querying these constructions by means of the AS keyword
and referencing the ID of the thus named object, as in Query Q5 in Fig. 3.

6 Conclusion and Further Work

We have presented the EMdF database model and the MQL query language of
our corpus query system, Emdros. We have shown how the data to be retrieved
for display-, statistical, or other purposes can often be different from what is
asked for in a linguistic query, differentiating between “meat”, “context”, and
“postprocessing results”. On the basis of this distinction, we have argued for
the strategy of separating the process of lingusitic querying from the process of
retrieval of data for display- or other purposes. This implementation strategy
of separation of concerns gives rise to the benefits of generality of the language
(and thus its applicability to a wide variety of linguistic applications), simplicity
of the language (and thus ease of use for the user), and modularity (and thus ease

10 Once we have implemented the general Kleene Star on strings of blocks, MQL will
be closed under atomic queries involving more than one block.

Principles, Implementation Strategies, and Evaluation of a CQS 225

of implementation, maintainability, and attainment of the goal of correctness for
the system implementor). Finally, we have evaluated MQL against the queries
and requirements of [13], and have shown MQL to be able to express most of
the queries, and to meet most of the requirements that [13] puts forth.

However, Emdros falls short on a number of grounds. First, although its
database model is able to handle intersecting hierarchies, its query language does
not currently handle querying these intersecting hierarchies very well. This can
be fixed by the inclusion of an AND operator between strings of object blocks.
Second, a general Kleene Star is lacking that can operate on groups of (option-
ally embedded) objects. Third, the query language currently only supports one,
explicit object type for any given object block. This can be fixed, e.g., by in-
troducing true object orientation with inheritance between object types. Fourth,
the system currently does not support real numbers as values of attributes of ob-
jects, which would be very useful for phonological databases. Fifth, it is currently
not easy to express other, more specific dominance relationships than immediate
dominance and general dominance. As has been described above, the removal of
most of these shortcomings is planned.

Thus Emdros is able to meet most of the requirements being placed on today’s
linguistic query systems. We have not here fully explored its applicability to
phonological or discourse-level databases, since [13] concentrated on treebanks,
but that is a topic for a future paper.

References

1. Mengel, A.: MATE deliverable D3.1 – specification of coding workbench: 3.8
improved query language (Q4M). Technical report, Institut für Maschinelle
Sprachverarbeitung, Stuttgart, 18. November (1999)

2. Cassidy, S., Bird, S.: Querying databases of annotated speech. In Orlowska, M., ed.:
Database Technologies: Proceedings of the Eleventh Australasian Database Con-
ference, volume 22 of Australian Computer Science Communications, Canberra,
Australia. IEEE Computer Society (2000) 12–20

3. Bird, S., Buneman, P., Tan, W.C.: Towards a query language for annotation graphs.
In: Proceedings of the Second International Conference on Language Resources and
Evaluation. European Language Resources Association, Paris (2000) 807–814

4. Lezius, W.: TIGERSearch – ein Suchwerkzeug für Baumbanken. In Busemann,
S., ed.: Proceedings der 6. Konferenz zur Verarbeitung natürlicher Sprache (KON-
VENS 2002), Saarbrücken. (2002) 107–114

5. Heid, U., Voormann, H., Milde, J.T., Gut, U., Erk, K., Pado, S.: Querying both
time-aligned and hierarchical corpora with NXT Search. In: Fourth Language
Resources and Evaluation Conference, Lisbon, Portugal, May 2004. (2004)

6. Rohde, D.L.T.: TGrep2 user manual, version 1.12. Available for download online
http://tedlab.mit.edu/˜dr/Tgrep2/tgrep2.pdf. Access Online April 2005 (2004)

7. Bird, S., Chen, Y., Davidson, S., Lee, H., Zheng, Y.: Extending XPath to support
linguistic queries. In: Proceedings of Programming Language Technologies for XML
(PLANX) Long Beach, California. January 2005. (2005) 35–46

226 U. Petersen

8. Petersen, U.: Emdros — A text database engine for analyzed or annotated text.
In: Proceedings of COLING 2004, 20th International Conference on Computa-
tional Linguistics, August 23rd to 27th, 2004, Geneva, International Commitee on
Computational Linguistics (2004) 1190–1193 http://emdros.org/petersen-emdros-
COLING-2004.pdf.

9. Petersen, U.: Evaluating corpus query systems on functionality and speed:
Tigersearch and emdros. In Angelova, G., Bontcheva, K., Mitkov, R., Nicolov,
N., Nikolov, N., eds.: International Conference Recent Advances in Natural Lan-
guage Processing 2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005,
Shoumen, Bulgaria, INCOMA Ltd. (2005) 387–391 ISBN 954-91743-3-6.

10. Doedens, C.J.: Text Databases: One Database Model and Several Retrieval Lan-
guages. Number 14 in Language and Computers. Editions Rodopi, Amsterdam
and Atlanta, GA. (1994)

11. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instruments and Computers 28 (1996)
203–208

12. McCawley, J.D.: Parentheticals and discontinuous constituent structure. Linguistic
Inquiry 13 (1982) 91–106

13. Lai, C., Bird, S.: Querying and updating treebanks: A critical survey and re-
quirements analysis. In: Proceedings of the Australasian Language Technology
Workshop, December 2004. (2004) 139–146

14. Beckman, M.E., Pierrehumbert, J.B.: Japanese prosodic phrasing and intonation
synthesis. In: Proceedings of the 24th Annual Meeting of the Association for
Computational Linguistics. ACL (1986) 173–180

15. Brants, S., Hansen, S.: Developments in the TIGER annotation scheme and their
realization in the corpus I. In: Proceedings of the Third International Conference
on Language Resources and Evaluation (LREC 2002), Las Palmas, Spain, May
2002. (2002) 1643–1649

16. Taylor, A., Marcus, M., Santorini, B.: The Penn treebank: An overview. In
Abeillé, A., ed.: Treebanks — Building and Using Parsed Corpora. Volume 20 of
Text, Speech and Language Technology. Kluwer Academic Publishers, Dordrecht,
Boston, London (2003) 5–22

	Introduction
	The EMdF Database Model
	The MQL Query Language
	Retrieval of Results
	Evaluation
	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

